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In order to determine the electric potential in collisionless tangential discontinuities of a
magnetized plasma, it is required to solve a non-linear Poisson’s equation with sources of
charge and current depending on the actual potential solution. This non-linear second-order
differential equation is solved by an iterative method. This leads to an ordered sequence of
non-linear algebraic equations for each successive approximation of the actual electric poten-
tial. It is shown that the method holds for transitions with characteristic thicknesses (D) as
thin as five Debye lengths (4). For smaller thicknesses, when D shrinks to 34 or less, the
method fails because in that case the iteration procedure does no longer converge. Numerical
results are shown for an jon-dominated layer (D~ 10°>—10°2), as well as for two electron-
dominated layers characterized by D= 54 and D ~2.51, respectively. In all cases considered
in this paper, the relative error on the electric potential obtained as a solution of the quasi-
neutrality approximation is of the order of the relative charge density. When the method
holds, each successive approximation reduces the relative error on the potential by roughly a
factor of 10. For space plasma boundary layers, the quasi-neutrality approximation can be
used with much confidence since their thickness is always much larger than the local Debye
length. € 1990 Academic Press, Inc.

1. INTRODUCTION

It is generally considered that in astrophysical and geophysical plasmas the
electron density balances almost exactly the ion charge density; ie., plasmas are
quasi-neutral. Nobody questions that this is a very satisfactory approximation in
uniform or nearly uniform plasma regions of space.

However, it has sometimes be questioned whether this approximation is still a
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valid one at the earth’s magnetopause [ 1] or at other sharp boundary layers where
the physical properties of the plasma (density, temperature, bulk speed, magnetic
field, ..} change abruptly from one set of values to another one. The
magnetospheric bow shock [27 is another type of boundary where a significantiv
large electric charge separation might be expected.

The purpose of this work is to verify on a few case studies that the guasi-
neutrality equation is indeed a valid zero-order approximaticn when the boundary
tayer has a thickness much larger than the characteristic Debye length.

One of the simplest type of boundary layer or plasma discontinuity observed in
space is the so-called planar “tangential discontinuity” (TD for short} in the
reference {rame tied to a TD there is no plasma crossing the laver. In addition. the
magnetic field component along the normal to the boundary vanishes. Further-
more, from conservation laws [3], the total plasme and field pressure across a TD
does not vary. However, the plasma velocity distribution and the tangential
magnetic field (intensity and direction) are both varying over short distances, as at
the interface of ferromagnetic domains in solid-staie plasmas. TDs have been found
to be abundant in the solar wind [4] and observations indicate that the esarth’s
magnetopause can sometimes be considered as a tangential discontinuity {37

To make theoretical models of steady-state coilisionless TDs, the plasma kinetic
method has been used by a number of authors [6-137. Actually, the Maxwell's
eguations for the electric and magnetic fields are combined with the Viasov
equation for the particles. The result is a set of second-order non-linear differentizl
equations for the electric and magnetic vector potentials, with sources of charge and
current depending on the actual potentials.

The solution of the Vlasov equaticn is based on the standard methods of
constructing distribution functions in terms of the conserved energy and generalized
momenta of the particles. Tt is then a relatively straightforward task to produce
solutions which mimic a number of observed steady-state boundary layers {&]. This
method is preferable to particle simulation involving a time dependent preblem
which leads to the set-up of steady-state electric and magnetic structures. Indeed,
for ypical space plasmas where the number of particies in a Debye sphere is of the
order of 10°, particle simulation involves a large number of particies whese trajec-
tories can be determined with efficiency by only high speed, large scale computers.
Although particle simulation is particularly useful whenever a limited number of
analytic methods are available, this is not the case for the problem under considera-
tion 1 this paper for which solutions of the Vlasov equation are straightforward.

Numerical difficulties arise, however, when attempts are made to integrate
Poisson’s equation for the electric potential-—a second-order non-linear differential
equation—by standard methods (e.g., Runge-Kutta or Hamin). These difficaities
arise because the right-hand side of Poisson’s equation is a difference between owe
very large numbers, the electron and ion densities, which are almost exactly equal
to each other. A zerc-order approximation of the actual electric potential (¢} can
however be determined as a solution of the guasi-neutrality squation, where the
electron density is a very sensitive function of ¢.
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Of course, this zero-order approximation holds whenever the total charge density
which is proportional to the Laplacian of ¢ is found a posteriori to be much smaller
than the charge density associated with the positively (or negatively) charged par-
ticles. Each time this condition is fulfilled, a self-consistent potential is obtained.
The aim of this paper is to study the small deviations from quasi-neutrality in TDs.
In this case, Poisson’s equation for the electric potential must be solved instead of
the quasi-neutrality equation. The higher order approximations obtained this way
are then compared to the zero-order approximation corresponding to the solution
of the quasi-neutrality equation.

In this paper, Poisson’s equation has been solved by an iterative method. The
procedure leads to successive approximations of the potential starting with the
zero-order approximation ¢, which is the solution of the algebraic quasi-neutrality
equation. The potential in the approximation of order # (n>0) is the solution ¢,
of a new algebraic equation obtained by replacing the right-hand side of the quasi-
neutrality equation by “a charge density,” ie. a quantity proportional to the
Laplacian of ¢, _,. It has been found that, after only a few iterations, the successive
approximations do not differ by more than the precision of the computer (nine
significant digits), at least for broad layers (the so-called ion-dominated layers in
['77) whose characteristic thickness is the ion gyroradius. For these ion-dominated
layers the zero-order approximation ¢, does not differ significantly from higher-
order approximations (i.€., |§, — @ol/|¢.l <3 x 107°) and in practice ¢, can be con-
sidered as very close to the actual potential. For thinner layers with thicknesses of
the order of an electron gyroradius (the so-called electron-dominated layers in
[71), it is shown that the iterative process is convergent as long as the characteristic
thickness (D) does not become smaller than five Debye lengths (4). The iterative
procedure fails however when D shrinks to about 31 or less. In all cases we have
considered so far, the relative error on ¢, (with respect to the actual potential) has
been found of the order of the relative charge density.

The model used for a collisionless TD will be briefly described in Section 2.
Although equilibrium configurations of TDs in collisionless plasmas under a wide
variety of boundary conditions and assumptions have been discussed in the
literature (see Ref. [6-13]), the model considered in this paper is a simplified ver-
sion based on the work of Sestero [7]. Section 3 outlines the iteration process used
to solve Poisson’s equation. In Sections 4 and 5 are displayed the numerical results
obtained for layers with various thicknesses, i.e., an ion-dominated layer (Section 4)
and two electron-dominated layers with D~ 54 and D =~ 2.54 (Section 5). Conclu-
sions are summarized in Section 6.

2. A KINETIC MODEL OF TANGENTIAL DISCONTINUITIES
For the sake of simplicity, we study steady-state, unidimensional planar current

layers which are parallel to the (y —z) plane of a cartesian coordinate system. All
plasma and field variables are assumed to depend only on the x-coordinate, normal
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to the layer. The magnetic field B is oriented along the z-axis while the electric fielc
E is parallel to the x-axis. In this model, the z-coordinate is an ignorabie coordinate
for the motion of a single plasma particle. Therefore, the so-called constants cf
motion are the energy (H) and the y-component of the generalized momentum {p*:

H=1m(vi+v?)+ Ze plx) (4
where Ze is the charge (e=1.6x10""C) of the particle of mass m and v iis
velocity, while #{x) is the electric potential;

[S9%)

p=mv,+ Ze a{x),

where a{x) is the magnetic vector potential (parallel to the y-axis).
Any function of # and p, F(H, p), is a solution of the steady-state Viasov squa-
tion. Consider the following distribution function [7] {or a given plasma specics:
F(H, py=0(p)n(H} (33
with
py=C, if pin ]—(sign Z)oo, 0]
=C, if pin [0, +(sign Ziocl
(sign Z= +1,if Z>0
=—1,ifZ<0),

where C,, C, are arbitrary (=0) constants and #{#) a Maxwellian distribution
given by

m HY R
rz(H)—rx(znkT>exp<— kT,f" {4}

where T is the asymptotic temperature of the particle species and « is a parameter
which has the dimension of a number density.

The distribution function (3) as a product of an exponential in H (the
Maxwellian # gives by Eq. (4)) by a step function in p gives conceivably the sim-
plest model describing a sharp transition layer. Note that other choices are possible
since for any single-valued distribution function in the whole {H, p) plane the
Viasov equation a priori admits a solution. Thus the state of the plasma at both
ends of a TD does not uniquely determine the transition profile. This is a peculiar
feature of the nonlinear Vlasov equation [ 13]. To remove the nonuniqueness of the
distribution functions, consideration of particle accessibility in phase space must be
met [147. This requires the knowledge of the characteristics of the plasma in the
boundary source regions together with the transport mechanisms bringing the
plasma to the transition itself. This problem being outside the scope of this paper
we will be content with Sestero’s distribution functions (3). Indeed, to illustrate the
departure from charge neutrality in thin boundary layers the choice of the distriba-
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tion functions is not crucial. Furthermore, the method for solving Poisson’s
equation developed in the next section would remain conceptually the same for any
other choice than the distribution given by (3) and (4).

From (3) and (4), the number density (n) and the current density (j)—parallel
to the y-axis-—can be computed as a function of ¢ and a. It is found that

o Zed a _ a
n—zexp< kT)I:C/ erfc (——21,,3R11B4>+C0 erfc( —_——ZMR B,,)] (5)
2kT\'? Z
lzl ea(C,— c[)<mD exp<— fjﬁ)e “ 1) (6)

7 a

where erfc is the complementary error function

2 > .
erfc(u) = —= J e “dx
NES
and R, B, is a constant given by
mkT\'? ,
R.B.= (ﬁ) (7)

with R, and B, being some characteristic asymptotic Larmor radius and magnetic
field, respectively; i.e.,

R.B,=R,B,=R,B,. (8)
In (8), R, and R, are the characteristic Larmor radii at x= —oc (on the left-
hand side) and x = +o0 (on the right-hand side), respectively; while B, and B, are
the magnetic field intensities at x= —oc and x= +oc, respectively.
The Maxwell equations to solve are
d2¢ e
- = Z iyt 9
dx2 80 vgl n ( )
‘a
== — o Z jU, (10)

v=1

where ¢, and y, are the vacuum permittivity and permeability, respectively
(6o =8.854x 10" "2 F/m, pu,=4nx10"7"H/m), and s is the number of particle
species.

The electric field (E, 0, 0) and the magnetic field (0, 0, B) are the derivatives of
potentials, i.e.,

E=— (11)
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The magnetic and electric field distributions within the boundary layer are then
determined by solving the system of differential equations (9) to (12) with #"*' and
j' given by (5) and (6), respectively. Equations (10) and (12} will be solved using
a Hamin's predictor-corrector scheme while (9) and (11) will be solved by using the
iteration process described in the next section. The right-hand sides of Eq. {9} and
{10) are non-linear functions of ¢ and a. Furthermore, the right-hand side of (9; is
a sum of terms which must remain much smaller than each individual term as 2
consequence of the tendency of plasmas to maintain electric neutrality. For these
reasons standard numerical procedures to solve Poisson’s equation generally fai to

converge.
Note that, in this model, if the electron (/ion) velocity distribation remains
Maxwellian from x= —o0 to x= 40, only the ions {/electrons} can be accelerated

inside the transition, on a characteristic scale lengths of the order of a few icn
{/electron) Larmor gyroradii. Following Sestero [73, these transitions are called
ion- {/electron)-dominated layers, respectively.

3. AN ITERATION PROCESS TO SOLVE POISSON'S EQUATION

Plasmas being quasi-neutral, d’¢/dx? ~ 0. Therefore, the zero-crder approxima-
tion of Poisson’s equation (9) is the quasi-neutrality equation:

[
()

Y Z™ "y, ¢6)=0.
v=1

By introducing the quantity N,,, (with the summation extended over ail species}
defined by

N, =Y ZK/ K K,'n 14)
with
Ze
Ki=—-— ii5
1 kT )
1 i m\?

K=—=—— {15}

>TKkT |Z[¢R.B, (kT) "
1 -
b= wp o

Eq. {13) can also be written as

4]

Nooolag, ¢4)=10. 18]
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Coupled with the differential equations (10) and (i2), (18) can be solved numeri-
cally. The potential ¢,—and also the higher order approximations ¢, ¢,, .. {see
below }—is then obtained by the Brent’s method of finding the root of a non-linear
equation (this method combines root bracketing, bisection and inverse quadratic
interpolation [15]).

We also introduce the quantities

J=Y ZK/ Ky’ Ky j (19)
and

j,-s1=z KHKst;j- (20)

By differentiating (18) twice with respect to x, it is possible to obtain algebraic
expressions for the first and second derivatives of ¢,. It is found that

$o= —BoJo10/N 100 (21)
6= "N 1067 o10{ Ho Jooo + 2B3 N 1007 110 — B3 N 1057010 Na00)
“aoB?)JouNfoé:(ég(ao,(éo, By). (22)

To carry out those derivatives, we have used the following differentiation rules:

ON,

=Nt (23)
Wty (24)
55';;% (25)
Yottt (26)

and for any quantity depending on ¢, a, and B

d 0 ] @
a—¢ 55"'35_[;“#0]000 B (27)

¢

The next approximation for ¢, i.e., the first-order approximation ¢, is solution of
the algebraic equation

Y Znar, 1) = =2 $j(ar. 41, By) (28)
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fo?

The right-hand side of this equation is given by {22). Equation {28) is coupled with
the differential equations (10) and (12) to obtain 4,, ¢,, and B,.

Higher order approximations for ¢ are solutions of algebraic equations of the
form:

——
i~
»}
o

& .
Z Zn(aiv ¢1}= —;0¢;’7](ai, ¢17 Bz)

Although the right-hand side of (29) can in principle be obtained by differentiat-
ing twice the previous equation for ¢,_,, the number of terms in the expression for
¢ becomes rapidly large for i = 2. Yet expressions for ¢} and ¢7 have been obtained
and can be found in the Appendix. Fortunately, the determination of expressions
for higher order second derivatives is unnecessary because numerical solutions for
the second-order approximation show that, even in thin electron-dominated layers,
a, and B, do not differ significantly from a, and B,. Therefore, for orders larger
than 2 [i=3 in (29)], (10) and (12) have been decoupled from (29} and the
method used to determine ¢,. ¢,. ... can be stated as follows:

{1} Coupled with the differential equations (10} and (12}, the equation

)

XZrz(az,(/Sz): ‘%¢T(aza¢z= B,) {

Lo
<o

"e

controls the second-order approximation for ¢,. in this equation, ¢i{a,. ¢., 8,) nas
been obtained by differentiating (28) twice with respect to x. Its mathematical
formulation can be found in the Appendix. The coupled equations (10), {12} and
(30} are then solved numerically. Their solutions are a,, ¢,, and B,.

{2) From the set of values for ¢,(x), the derivatives ¢’ and ¢, are determined
numerically by a Lagrangian method of interpolating polynomials using 5 or 7
points.

{3) From (29), third and higher order approximations for ¢ are successively
determined numerically by the Brent’s method while keeping the second-order
approximation (a., B,) for a and B. From these higher order approximations
(i=3), 43, &4..., are also determined numerically by a Lagrangian method of inter-
polating polynomial.

This iterative method of solving Poisson’s equation remains near to the physics
sustaining the natural tendency of plasmas to maintain quasi-neutrality. [ndeed.
each iteration leads to a new potential resulting from the weak charge separation
computed in the previous iteration. In a few iterations. the deviation from quasi-
neutrality can therefore be easily deduced. When the iterative process is convergent
(it is in fact rapidly convergent for broad layers) the solution requires only sciving
a few non-linear algebraic equations at each value x. As a constant x-spacing is 1ot
required in this process, the algebraic equation {29) {or ¢ can be added tc a predic-
tor-corrector scheme for solving the coupled differential equations (10} for the
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magnetic vector a. This is particularly interesting when mixed boundary layers (ie.,
boundary layers with both electron and ion-gyroradii as characteristic scale
lengths) are involved.

Although other methods for solving boundary value differential equations could
in principle be applied to this problem, as for instance, the conjugate gradient algo-
rithm [16] or the strongly implicit procedure of Stone [17], these methods usually
boil down, at least conceptually, to the solution of large numbers of simultaneous
non-linear equations solved by lincarization and iteration. Another interesting
approach could be the use of the simultaneous overrelaxation (SOR) method [18]
for which an initial distribution ¢(7, x) relaxes to an equilibrium with time
derivative vanishing as r— oc. However, most of these alternative methods use a
constant x-spacing. Therefore, for mixed transition layers, the simultaneous solu-
tion of Eqs. (9) and (10} by these methods should imply a sufficiently small (and
constant) x-spacing to be able to describe the very thin electron layers embedded
in a broader ion layer. The number of algebraic equations to be solved
simultaneously would increase accordingly and the computer storage available to
implement these methods should be large enough.

However, the method we have introduced in this paper provides an interesting
and completely different numerical procedure which is conceptually simpler and is
somewhat more physical. Furthermore, it does not require a large computer
storage.

4. SOLVING PoissoN’s EQUATION IN AN ION-DOMINATED LAYER

In this section, we consider a TD separating a hot hydrogen plasma from a
cooler one. The velocity distribution function for the electrons as a whole is
isotropic since an ion-dominated layer is assumed. This layer has plasma boundary
conditions characterized by eight plasma parameters as listed in Table 1. Across the
transition region, the temperature and density of each plasma species are respec-
tively 8(x) and n(x). Asymptotically, 8(+ 0 )=T, n(—2)=N, and n(+x)=N,.
The magnetic field at x= —oo is assumed to be 40 nT.

TABLE I

Plasma Boundary Conditions and Parameters of
Velocity Distribution Functions for
the Ion-Dominated Layer Illustrated in Fig. 1.

v Z Species T(eV) N,(ecm~3) NJfecm™3) C, C

1 —1 Electrons 2500 0.5 0 1 0
2 —1 Electrons 2500 0 0.15 0 1
3 +1 Protons 12.000 0.5 0 1 0
4 +1 Protons 3000 0 0.15 0 1
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These plasma parameters correspond to two mterpenetrated hydrogen plasmas
with different characteristics. They correspond to typical magnetospheric plasma
populations. The values of the parameters C, and (', {see Eq. {3}} are also given
in this table. From (3}, it can be seen that they are consistent with the fact that the

plasma from x= —oo (/from x= +o0) is absent at x= 4+ {{x= —x).
From Table I and from (5), the number densities {#) for each plasma species caxn
be written
t ed a \
' =—gMex erfc( . 31
2 PAkT 7R3, i
., 1 e / a )
= a'Pexp{ —— erfc( - (32
) PA\kT- 2R B ) /
1 e u )
3 3 1
n' ’—Eoc ’eXp<—kT‘3’>erfC(2‘2R‘3'B) {33;
ed / a \
n® g(‘“exp(— _—kT“’) erfc | 2‘2R‘4’B,} {345

m kTN
R;B,=R B, = — |
e” /
Let us now choose the electric potential at x= —x equal to zero, ic..,
B(—o0)=0

then, the parameters o in Eqgs. (31)-(34) can be seen to be related to the asymptouc
densities and to the value of ¢ at x = +c0. Taking the plasma neutrality at x = + %
into account. i.e.,

NP =N®=N,(=05cm ) 1363
NH=N¥=N(=0.15cm %), (37}
one obtains {assuming that B(x)>0, so that a(—x}= —oc and a(+ )= +x)
alV=93 =N, (=0.5¢cm ™) £38)
a2 exp ep(+ ) — o exp | _epitoc)
) kT~ ‘ { kT

=N. {=0.15cm >} {39
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As the electron velocity distribution as a whole is isotropic, Eq. (3) implies that «®
must be identical to o'!). Therefore, from (38) and (39)

Htoo)=T I (N’>(= —3009.932 V) (40)
e N{
(4) NN -3
d=N, (T (~0.055 cm ). (41)
£

The electron density throughout the transition is then

n=(x)=n"+nP=N,exp [2—(»](;)] (42)

Of course, Eq. (42) represents a Maxwellian distribution of electrons in the field
of a conservative force (the electric field) acting on them. Consequently, the elec-
trons do not contribute to the current density. This can be seen directly from (6)
since j V= —j® and j~ =0. Therefore, the current density inside the layer is only
due to the protons and the characteristic thickness of this transition is the proton
gyroradius [R$) =280 km, R'" =86.5 km with B,=64.70 nT].

Figure 1 illustrates the structure of the electric potential, electric field, and charge
density for different orders of approximation in solving Poisson’s equation. The dis-
tance across the transition is given in unit of the ion gyroradius at x= —cc (ie,
R} = R®=280km). The bottom panels demonstrate that, on and after the first-
order approximation, the electric potential is determined with a relative accuracy
[(¢5—é,)/d3| (i=1,2) much less than 10~7. The quasi-neutrality approximation
(¢o) still remains a very good approximation, since |(@, — ¢,)/¢,] is less than

x 106 f.can also be seen that, on and after the first-order annroximation. the

approximations. This means that the iterations are converging in cases of ion-
dominated layers. Note also that the relative error on ¢, considered as an
approximate solution of Poisson’s equation (i.e., 3 x 107°) is of the order of the
relative charge density Q,/en~ (n~ being the total electron density).

5. SOLVING PoISSON’S EQUATION IN AN ELECTRON-DOMINATED LAYER

The plasma parameters in the case of an electron-dominated layer are given
in Table II. The magnetic field at x= —oc is 40nT. In this example,
TW=TH=T-=2500eV and T®=T"*=T*=5000eV.

The expressions for the number densities (r) are similar to the ones given by
Egs. (31)-(34) with T =T"=T"* and

RYB, = R4 — (In+kT+>1x2
b4 z 14 ez *
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Fic. 1. Electric structure of an ion-dominated layer. Plasma boundary conditions are given in
Table 1. The magnretic field at x= —x is 40 nT. The ion gyroradius (R} = &Y' =280 ki) is the charac-
teristic scale length. The left-hand side panels display the electr:c potential (¢). while the electric field { £}
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Approximations of the solution of Poisson’s equation are displayed up to the third order. The bottom
panels are enlargements of a tiny small section of the layer. It can be seen that the successive app-oxima-
tons are very rapidly converging to a solution. This solution still remains very close to the result
obtained from the quasi-neutrality approximation or zero-order approximation (within a precision of
3 x 1079} The relative error on ¢, can be seen to be of the order of Gyien™ (#~ being the tcial eleciron

density ).

TABLE I

Plasma Boundary Conditions and Parameters of
Velocity Distribution Functions for
the Electron-Dominated Layer Illustrated in Fig. Z and 3.

v Z Species T(eV) N,(cm™%) Nyem™%) C, C,
1 —1 Electrons 2500 0.5 9 0
2 —1 Electrons 2500 0 04 0 1
3 +1i Protons 5000 0.5 4] P00
4 +1 Protons 5000 0 0.4 [V

581/86/2-15
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Assuming (35) to hold and B(x)> 0, the plasma neutrality at x = + 00 imposes

aV=aP =N, (=0.5cm~?) (43)
a'? exp [eqj%ji)] =aexp [— @%o_o_)] =N, (=04cm73). (44)

As the ion velocity distribution as a whole is isotropic, (3) and (43) imply that
aW=aP=nN, (=0.5¢cm™3). (45)
Therefore, from (44) and (45),

+
¢(+OO)=—kT In <£V_,> (=1115718 V) (46)
) e N/
T
a= N, (%) (=0.256 cm ™). (47)
4

The proton density throughout the transition is then

(48)

nt(x)y=n+n¥=N, exp[ €¢(x)].

kTt

As expected, (48) represents a Maxwellian distribution of protons in the field of
a conservative force (the electric field) acting on them. Consequently, the protons
do not contribute to the current density.

Indeed, from (6), /= —j® and j* =0. Therefore the current density inside the
layer is only due to the electrons and the characteristic thickness is the electron
gyroradius [R"' =298 km, R'* =2.73 km with B,=43.61 nT].

Figure 2 illustrates the structure of the electric potential, electric field and charge
density up to the fourth order in solving Poisson’s equation by the iteration method
explained in Section 3. The distance across the transition is given in units of the
electron gyroradius at x= —o (ie, R; =R{"'=298 km). It can be seen that
@y — do)/d4| is of the order of 6 x 1073, while (¢, —¢,)/@,| is of the order of
5x10~% It can also be seen that each successive approximation ¢, (i=0, .., 3)
reduces the relative error on ¢, |(¢,— #,)/d4l, by roughly a factor of 10. These suc-
cessive approximations converge to an single solution, since the differences between
them decrease as the order of approximation increases. This is illustrated in the
lower panels: the successive charge densities @, (i=0,..,4) converge to an
asymptotic solution located between the Q;- and Q,-curves. As previously noted,
the relative error on ¢,. considered as an approximate solution of Poisson’s
equation (ie., 6 x 10~?) is again of the order of Q,/en .

The maximum error in the electric field intensity using the quasi-neutrality
approximation can be seen to be less than 3%. This maximum error occurs at the
center of the transition region, where the gradient of the potential is maximum.
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Fic. 2. Electric structure of an electron-dominated layer. Plasma boundary conditions are given in
Tabie II. The magnetic field at x = —oc is 40 nT. The electron gyroradius (R, = R\ =2.98 km) is the
characteristic scale length. The above panels display the electric potential {¢) while the electric field (£}
and the charge density (Q) are represented in the middle and bottom panels. respectively. Approxima-
tions of the solution of Poisson’s equation are displayed up to the fourth order. Panels in the second and
third columns are enlargements of small or tiny sections of the layer It can be seen that the successive
approximations are converging to a solution. In this example, the characteristic thickness {D) is of the
order of five Debye lengths (1). Note that each successive approximation reduces the relative error cn
¢ by roughly a factor of 10. The relative error on ¢, is still of the order of Jg/en~ (1~ bemng the total
electron density). In this example, the solution ¢, obtained from the guasi-nsutrality approximation
holds within a precision of 6 x 107,
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Fi1c. 3. An illustration showing that a, B, and J (the total current density, J=3j) are not very
sensitive to the order of approximation in solving Poisson’s equation. For the electron-dominated layer
considered in this example (same as Fig. 2), this result is more specifically true on and after the first-
order approximation. Because a, B, and J do not change significantly when the order of approximation
becomes larger than 2, (29) can be decoupled from Egs. (10) and (12) when considering approximations
with order equal to (or larger than) 3.

Note also that the charge density in this electron-dominated layer is about 10°
times larger than the corresponding charge density computed in the ion-dominated
layer illustrated in Fig. 1. In Fig. 1 and 2, the Debye length (4,) at x= —x0 is
526 m. In the electron-dominated layer shown in Fig. 2, the Debye length at
x= 400, (4,) is 588 m while the characteristic thickness D lies between R, =
298 km and R =273 km, ie, D/Ax4.65—5.67. For such thicknesses (D = 51),
the method of successive approximations remains a convergent one and, further-
more, the quasi-neutrality approximation is still a reasonable approximation which
can be used for all practical purposes.

In Fig. [ and 2, E, and Q, have been calculated numerically by a Lagrangian
method of interpolating polynomial. Third-order (Fig. 1 and 2) and fourth-order
(Fig. 2) approximations have been successively determined as solutions of (29)
while keeping the second-order approximation (a,, B,) for a and B. For the plasma
boundary conditions given in Table II, Fig. 3 indicates that ¢ and B are not very
sensitive to the order of approximation in solving Poisson’s equation. Indeed, it can
be seen that a,, B,, and J, (the total current density) do not differ significantly
from a,, B,, and J, (the differences are even much less in ion-dominated layers
such as the one illustrated in Fig. 1). Therefore, on and after the third order, it is
quite justified to decouple (29) from Egs. (10) and (12) as done in this paper.

At this stage, it can be asked whether convergence is still achieved when the
thickness D schrinks to a few Debye lengths 4. The results presented in Fig. 4
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Fic. 4. Electric structure of an electron-dominated layer. The plasma and magnetic fieid boundary

conditions are identical to those pertaining to Fig. 2, except that, at x = +oc, the number density of the
patticles of either sign has been lowered (N,=0.15cm™*) The electron gyroradius {8, =&} =
2.98 km} is the characteristic scale length. In this example, the Debye length on the right-rand side of
the transition is 960 m. ie., a small fraction of the electron gyroradius {K~ =2.31 km). It can be seea
that, for positive values of x (x~ 1.5- 3R/, the successive approximations for ¢, do not converge o
a solution, since higher order approximations differ more and more from lower ones. Note that the
charge density in this example is 10 times larger than the one illustrated in Fig. 2.

that the transition is an electron-dominated layer (${+o0)=~6020V, z'*
0.0135 cm ).

Because the number density at x = + 00, {N,) has been reduced, the Debye leng:h
at the right-hand side of this transition increases {4, =960 m). In this example, the
Debye length (4,) is a small fraction (R /A, =2.41) of the electron gyroradius a:
x=+x (R =23Lkmj and it can be seen from Fig. 4, that for positive values of
xix ~ 1.5 3R}, the successive approximations do not converge to an asympiotic
solution, since higher order approximations for @, differ more and more from iower
ones. It can therefore be concluded that when D is of the order of 1 — 34, the
method of successive approximations for solving Poisson’s equation breaks down.
Note also that the charge density in this example is 10 times larger than the one
illustrated in Fig. 2.

It can also be concluded that in the case where the plasma density approaches
zero on one side (ie., plasma-free magnetic ficld on one side of the TD and ficld-
free plasma on the other) the iterative method proposed above will fail to converge.
since when the plasma density approaches zero the Debye length grows indefinitely
and the quasi-neutrality approximation always fails to be valid at the outermost
edge of the plasma region. This is the case of the classical Ferraro [197 cold plasma
sheath model: an early attempt to describe the solar wind-magnetosphere intzrac-
tion region as a TD between a vacuum geomagnetic field on one side and a cold
streaming solar wind on the other. The basic feature of this mode! was that the
random thermal speed of the solar wind was assumed to be smail compared ¢ the
organized streaming velocity.
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An attempt to improve the quasi-neutrality approximation in the case of the cold
plasma sheath model was made by Sestero [20]. For that model, which shows
large charge separation effects, Sestero found that Poisson’s equation could be
solved by a Runge-Kutta integration scheme. This result seems to indicate that
Runge-Kutta or Hamin integration methods could be used when the thickness
of the transition becomes smaller than a few Debye lengths, i.e., when charge
separation effects cease to be negligible. It can therefore be expected that when the
method of successive approximations fails to converge, i.e., when the electric charge
density becomes large, usual integration methods such as Runge-Kutta or Hamin
predictor-corrector scheme could successfully be used instead.

6. CONCLUSIONS

From this study of Poisson’s equation in collisionless TD, it can be concluded
that the difficulty in solving this second-order differential equation by standard
computational methods, such as Runge-Kutta or Hamin schemes, can be avoided
in many practical problems by using the so-called quasi-neutrality approximation.
For the broad ion-dominated layer illustrated in Fig. 1 (D~ 10%—10°4), the
relative error of the quasi-neutral solution is of the order of 10~°~10 "¢ tor the
electric potential.

For the thin electron-dominated layer illustrated in Fig. 2 (D= 51), the quasi-
neutrality approximation holds to a relative precision of the order of 1071072 In
this electron-dominated layer, the error on ¢ can be reduced by considering higher
order approximations. Each successive approximation reduces the relative error on
¢ roughly by a factor of 10. However, as illustrated in Fig. 4, when the charac-
teristic thickness of an electron-dominated layer shrinks to a value less than 34, the
method of successive approximations for solving Poisson’s equation fails. In these
sharp transition layers, the relative charge density is generally larger than 102 In
that case, it is expected that Runge-Kutta or Hamin schemes could be stable
integration methods.

In all cases illustrated in this paper, the relative error on ¢, is of the order of
Qo/en~ (the relative charge density). This means that, even in very sharp trans-
itions with D =x34, the potential obtained by solving the quasi-neutrality
approximation does not differ from the true solution by more than a few percent.

Since, in space plasmas, the Debye length is generally much smaller than the
characteristic scale lengths of density and field variations, the quasi-neutrality
approximation can be used with much confidence in all cases, even in sharp trans-
itions like those involved in the mechanism of generation of discrete auroral arcs as
proposed by Evans e al. [21] and Roth et al. [22]. Although the charge-neutrality
approximations were used in these studies, the conclusions that were deduced
therein remain unaltered, in light of the present study.

The iterative method of successive approximations, that has been developed in
this paper to solve Poisson’s equation in the case of TDs, is suitable when an
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improvement in the electric potential accuracy is desirable, particularly when the
thickness of the transition region shrinks to D~ 54. But, even in this case. the
correction on the quasi-neutral solution does not exceed 1%.

It has also been shown that the modifications of the electrostatics resulting from the
consideration of higher order approximations leave the magnetic field distribution
virtually unchanged (see Fig. 3). Therefore, early in the process of iteration,
Poisson’s equation can be decoupled from the equation governing the magnetic
field. In particular, when the magnetic field coupling is weak, manipulation of the
turgid ¢7 function in the Appendix can probably be avoided by already ignoring the
magnetic field coupling from the second order approximation. In that case.
computation of ¢| can be made directly by a Lagrangian method ¢f interpolating
polynomial.

When applied to purely electrostatic problems involving solely a non-linear
Poisson’s equation with source of charge depending on the electrostatic potentisi.
the applicarion of the iteration process is then straightferward. Indeed, as a conse-
quence of the absence of magnetic field coupling, the Laplacian of each ¢, can then
be computed directly by the usual Lagrangian method without resorting to expiicit
expressions for the second derivatives of lower order solutions.

Generally speaking, the iterative method of successive approximations developed
in this paper can be easily extended to any problems involving a non-iincar
Poisson’s equation with a right-hand side member depending on the zctual
potential solution. Compared to other numerical methods, this one is conceptually
simpler, has a more physical ground, does not require a constant x-spacing and
need no large computer storage.

APPENDIX

The first-order approximation ¢, is solution of (28), ic..
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where ¢g is given by (22).

By deriving (28) once and twice with respect to x, one obtains expressions for
$ilay, ¢,. B)) and ¢{(a,. ¢,, B,), respectively (note that the derivative rules for ;..
are similar o those given for J,,: use j instead of J in (25) and (26)). It is found
that
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