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In order to determine the electric potential in collisionless tangential discontinuities of a 
magnetized plasma, it is required to solve a non-linear Poisson’s equation with sources of 
charge and current depending on the actual potential solution. This non-linear second-order 
differential equation is solved by an iterative method. This leads to an ordered sequence of 
non-linear algebraic equations for each successive approximation of the actual electric poten- 
tial. It is shown that the method holds for transitions with characteristic thicknesses (D) as 
thin as five Debye lengths (1). For smaller thicknesses, when D shrinks to 31 or less, the 
method fails because in that case the iteration procedure does no longer converge. Numerical 
results are shown for an ion-dominated layer (D Q 10’ - 10’2 j. as well as for two electron- 
dominated layers characterized by D z 5/1 and D 5 2.51, respectively. In all cases considered 
in this paper, the relative error on the electric potential obtained as a solution of the quasi- 
neutrality approximation is of the order of the relative charge density. When the method 
holds, each successive approximation reduces the relative error on the potential by roughly a 
factor of 10. For space plasma boundary layers, the quasi-neutrality approximation can be 
used with much confidence since their thickness is always much larger than the local Debye 
length. se’ 1990 Academic Press, Inc. 

1. INTR~DL~CTI~N 

It is generally considered that in astrophysical and geophysical plasmas the 
electron density balances almost exactly the ion charge density; i.e., plasmas are 
quasi-neutral. Nobody questions that this is a very satisfactory approximation in 
uniform or nearly uniform plasma regions of space. 

However, it has sometimes be questioned whether this approximation is still a 
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valid one at the earth’s magnetopause [ 11 or at other sharp boundary layers rvhere 
the physical properties of the plasma (density. temperature, bulk speed, magnetic 
field, . ..I change abruptly from one set of values to another one. The 
magnetospheric bow shock [2] is another type of boundary where a significantly 
large electric charge separation might be expected. 

The purpose of this work is to verify on a few case studies that the qcasi- 
neutrality equation is indeed a valid zero-order approximation -when the boundar:- 
layer has a thickness much larger than the characteristic Debye iength. 

One of the simplest type of boundary layer or plasma discontinuity obserl,ed in 
space is the so-called planar “tangential discontinuity” (T for short). In the 
reference frame tied to a TD there is no plasma crossing the .er. In addition, the 
magnetic field component along the normal to the boundary vanishes. Fur:her- 
more, from conservation laws 131, the total plasma and held pressure across a TD 
does not vary. However, the plasma velocity distribution and the tangential 
magnetic field (intensity and direction) are both varying over shor 
the interface of ferromagnetic domains in solid-state plasmas. TDs 

to be abundant in the solar wind [4] and observations indicate at the earth’s 
magnetopause can sometimes be considered as a tangential discontinuity [j]. 

To make theoretical models of steady-state collisionless TDs, the plasma kinetic 
method has been used by a number of authors [&IS]. actually, the MaxweXs 
equations for the electric and magnetic fields are combined with the “&so:: 
equation for the particles. The result is a set of second-order non-linear differential 
equations for the electric and magnetic vector potentials, with so~urces of charge and 
current depending on the actual potentials. 

The solutions of the Vlasov equaticn is based on the standard methodi‘ ~4 
constructing distribution functions in terms of the conserved energy and generalized 
momenta of the particles. It is then a relatively straightforward task to pmduce 
solutions which mimic a number of observed steady-state boundary layers [6]. This 
method is preferable to particle simulation involving a time dependent prcbiem 
which leads to the set-up of steady-state electric and magnetic structures. Indeed, 
fzor ;ypicaT space plasmas where the number of particles in a Debye sphere is of tte 
order of IO’, particle simulation involves a large number of particIes whose trajec- 
tories can be determined with efficiency by only high speed, large scale computers. 
Although particle simulation is particularly useful whenever a limited number of 
analytic methods are available, this is not the case for the problem under comidesa- 
tion m this paper for which solutions of the Vllasov equation are straightforward. 

Numerical dificulties arise, however, when attempts are made to inte,gra:e 
Poisson’s equation for the electric potential-a second-o er non-linear differential 
equation-by standard methods (e.g., Runge-Kutta OF amin ). These difEcui:ies 
arise because the right-hand side of Poisson’s equation is a difference between ‘XC 
very large numbers, the electron and ion densities, which are almost exactly equal! 
to each other. A zero-order approximation of the actual electric potential (@) can 
however be determined as a solution of the quasi-neutrality equation, whe~(e -ihe 
electron demity is a very sensitive function of 4. 
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Of course, this zero-order approximation holds whenever the total charge density 
which is proportional to the Laplacian of 4 is found a posteriori to be much smaller 
than the charge density associated with the positively (or negatively) charged par- 
ticles. Each time this condition is fulfilled, a self-consistent potential is obtained. 
The aim of this paper is to study the small deviations from quasi-neutrality in TDs. 
In this case, Poisson’s equation for the electric potential must be solved instead of 
the quasi-neutrality equation. The higher order approximations obtained this way 
are then compared to the zero-order approximation corresponding to the solution 
of the quasi-neutrality equation. 

In this paper, Poisson’s equation has been solved by an iterative method. The 
procedure leads to successive approximations of the potential starting with the 
zero-order approximation &, which is the solution of the algebraic quasi-neutrality 
equation. The potential in the approximation of order n (n>O) is the solution d,, 
of a new algebraic equation obtained by replacing the right-hand side of the quasi- 
neutrality equation by “a charge density,” i.e., a quantity proportional to the 
Laplacian of 4,, _, . It has been found that, after only a few iterations, the successive 
approximations do not differ by more than the precision of the computer (nine 
significant digits), at least for broad layers (the so-called ion-dominated layers in 
[ 71) whose characteristic thickness is the ion gyroradius. For these ion-dominated 
layers the zero-order approximation &, does not differ significantly from higher- 
order approximations (i.e., Id,, - &/1~,,1 < 3 x 10ph) and in practice &, can be con- 
sidered as very close to the actual potential. For thinner layers with thicknesses of 
the order of an electron gyroradius (the so-called electron-dominated layers in 
[7]), it is shown that the iterative process is convergent as long as the characteristic 
thickness (D) does not become smaller than live Debye lengths (1). The iterative 
procedure fails however when D shrinks to about 31 or less. In all cases we have 
considered so far, the relative error on do (with respect to the actual potential) has 
been found of the order of the relative charge density. 

The model used for a collisionless TD will be briefly described in Section 2. 
Although equilibrium configurations of TDs in collisionless plasmas under a wide 
variety of boundary conditions and assumptions have been discussed in the 
literature (see Ref. [6-13]), the model considered in this paper is a simplified ver- 
sion based on the work of Sestero [7]. Section 3 outlines the iteration process used 
to solve Poisson’s equation. In Sections 4 and 5 are displayed the numerical results 
obtained for layers with various thicknesses, i.e., an ion-dominated layer (Section 4) 
and two electron-dominated layers with D z 51 and D z 2.51 (Section 5). Conclu- 
sions are summarized in Section 6. 

2. A KINETIC MODEL OF TANGENTIAL DISCONTINUITIES 

For the sake of simplicity, we study steady-state, unidimensional planar current 
layers which are parallel to the (I? - 2) plane of a Cartesian coordinate system. All 
plasma and field variables are assumed to depend only on the x-coordinate, normal 
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to the layer. The magnetic field B is oriented along the z-axis while the electric field 
E is parallel to the x-axis. In this model, the ;-coordinate is an ignorab!e coordinate 

for the motion of a single plasma particle. Therefore, the so-called constants of 
motion are the energy (H) and the p-component of the generalized momentum i f~ I: 

H=~m(tl’,ftlf)+Ze~i.ui ;i’ I - ! 

where Ze is the charge (e= 1.6 x 10-“C) of the particle of mass !pi and ‘i iis 
velocity, while $(x) is the electric potential; 

p = mu,. f Ze a(x 1. (2 i 

where n(s) is the magnetic vector potential (parallel 10 the J.-axis). 
Any function of H and p, F(H, p), is a solution of the steady-state Vlasov equa- 

tion Consider the following distribution function [7] for a given plasma species: 

with 

F(H, pj = 6(pj f?(H) gj 

6(p) = c, if pin]-jsignZ)m,O] 

zz C, if pin LO. +(signZ)x[ 

(signZ= tl,ifZ>O 

= -1, if Z<O), 

where Ci, C, are arbitrary (20) constants and r)(H) a Maxwellian distribution 
given by- 

i4! 

where T is the asymptotic temperature of the particle species and a is a parameter 
which has the dimension of a number density. 

The distribution function (3) as a product of an exponential in H (ihe 
Maxwellian q gives by Eq. (4)) by a step function in p gives conceivably the sim- 
plest model describing a sharp transition iayer. Note that other choices are possible 
since for any single-valued distribution function in the whole (H, p) plane rhe 
VZasov equation a priori admits a solution. Thus the state of the plasma at Sot5 
ends of a TD does not uniquely determine the transition profile. This is a pecu.liar 
feature of the nonlinear Vlasov equation [ 131. To remove the nonuniqueness of the 
distribution functions, consideration of particle accessibility in phase space must be 
met [ 141. This requires the knowledge of the characteristics of the plasma in the 
boundary source regions together with the transport mechanisms bringing the 
plasma to the transition itself. This problem being outside the scope of this paper 
we will be content with Sestero’s distribution functions (3). Indeed, to illustrate the 
departure from charge neutrality in thin boundary layers the choice of the distribc- 
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tion functions is not crucial. Furthermore, the method for solving Poisson’s 
equation developed in the next section would remain conceptually the same for any 
other choice than the distribution given by (3) and (4). 

From (3) and (4), the number density (n) and the current density (j)-parallel 
to the y-axis--can be computed as a function of 4 and a. It is found that 

(5) 

i=1,,..,,,-,:,)(~“~exp(-~)expi-~). (6) 
a P 

where erfc is the complementary error function 

and R,B, is a constant given by 

with R, and B, being some characteristic asymptotic Larmor radius and magnetic 
field, respectively; i.e., 

R,B,=R,B,=R,B,. (8) 

In (S), R, and R, are the characteristic Larmor radii at .Y= -~ZC (on the left- 
hand side) and s = +cr (on the right-hand side), respectively; while B, and B, are 
the magnetic field intensities at x= -CC and x= +w, respectively. 

The Maxwell equations to solve are 

(10) 

where Ed and ,u~ are the vacuum permittivity and permeability, respectively 
(E, = 8.854 x lo-l2 F/m, pco=4n x lop7 H/m), and s is the number of particle 
species. 

The electric field (E, 0, 0) and the magnetic field (0, 0. B) are the derivatives of 
potentials, i.e., 



The magnetic and electric field distributions within the boundary layer are then 
determined by solving the system of differential equations (9) to (?2) with o”’ and 
“” J given by (5) and (61, respectively. Equations (IO) and (22) will be solved usrng 
a Hamin’s predictor-corrector scheme while (9) and (11 f will be solved by using the 
iteration process described in the next section. The right-hand sides of Eq. (9) and 
( 103 are non-linear functions of 4 and a. Furthermore, the right-hand side of (9) is 
a sum of terms which must remain much smaller than each ~ndiv~d~a~ te 
consequence of the tendency of plasmas to maintain electric neutrality. For these 
reasons standard numerical procedures to solve Poisson’s equation generahy f&j to 
converge. 

Wore that. in this model, if the electron (;‘ion) veiocity distribution remains 
Maxwellian from s = -‘r;‘ to .Y = + S, only the ions (,/electrons ) can be accelerated 
anside the transition, on a characteristic scale lengths of the order of a few icn 
( /electron ) Larmor gyroradii. Following Sestero 17 7, these transitions are caiIed 
ion- (/electron )-dominated layers, respectively. 

3. AN ITERATION PROCESS TO SOLVE Porsso~h EQUATION 

Plasmas being quasi-neutral, d2(i,idx’ 2: 0. Therefore, the zero-order approxima- 
tion of Poisson’s equation (9 ) is the quasi-neutrality equation: 

J: introducing the quantity N,,7, (with the summation extended over a3 species) 
defined by 

with 

Eq. ( 13) can also be written as 
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Coupled with the differential equations (10) and (12), (18) can be solved numeri- 
cally. The potential #,--and also the higher order approximations 4,) d2, . . . (see 
below)-is then obtained by the Brent’s method of finding the root of a non-linear 
equation (this method combines root bracketing, bisection and inverse quadratic 
interpolation [ 151). 

We also introduce the quantities 

J,.,, = c ZKlrKzSK3* j (19) 

j,,, = c K,‘K,” K,‘j. (20) 

By differentiating (18) twice with respect to x, it is possible to obtain algebraic 
expressions for the first and second derivatives of d,. It is found that 

To carry out those derivatives, we have used the following differentiation rules: 

aNr,r = 

a(i 

N 
r+ 1,s.r 

dNt3, -= Jr,,, 1.r f32 

a Jr,, 
-= Jr-fml.3., 
ad 

8J,.,, - = a Jr, s. I -+ I da 

and for any quantity depending on 4, a, and B 

(24) 

(25) 

(27) 

The next approximation for 4, i.e., the first-order approximation dr is solution of 
the algebraic equation 
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The right-hand side of this equation is given by (22). Equation (28) is coupled with 
the differential equations (10) and (12) to obtain a,, $r, and B,. 

igher order approximations for CJ~ are solutions of algebraic equations of the 
form: 

CZn(q, fji)= -~&~,(a,. (Is,, Bij. 
e 

Although the right-hand side of (29) can in principle be obtained by differentiat- 
ing twice the previous equation for dj- r, the number of terms in the expression for 
$:‘becomes rapidly large for i 3 2. Yet expressions for 4; and 4’; have been obtained 
and can be found in the Appendix. Fortunately, the determination of expressions 
for higher order second derivatives is unnecessary because numerical solutions for 
the second-order approximation show that, even in thin electron-dominated layers, 
az and BZ do not differ significantly from n, and B,. Therefore: for orders larger 
than 2 [i> 3 in (29)], (10) and (12) have been decoupled from (29) and the 
method used to determine 4?. $3. . . . can be stated as fo!Iows: 

(lj Coupled with the differential equations (IO) and (12j, the equation 

controls the second-order approximation for #-. In this equation, ~$;‘(a?. d?, d?) ‘ha-s 
been obtained by differentiating (28) twice with respect to s, Its mathematical 
formulation can be found in the Appendix. The coupled equations (lo), ( 12 !, an.d 
(30) are then solved numerically. Their solutions are LIP, 4z, and Bz. 

(2) From the set of values for $-Jr), the derivatives & and c$; are determined 
numerically by a Lagrangian method of interpolating polynomials using 5 or 7 
points. 

(3 j From (29), third and higher order approximations for 4 are successively 
determined numerically by the Brent’s method while keeping the second-order 
approximation (a?, B2) for a and B. From these higher order approximations 
(id 3), 4;; b;‘..., are also determined numericaily by a Lagrangian method of inter- 
polating polynomial. 

This iterative method of solving Poisson’s equation remains near to the physics 
sustaining the natural tendency of plasmas to maintain quasi-neutrality. Indeed. 
each iteration leads to a new potential resulting from the weak charge separation 
computed in the previous iteration. In a few iterations, the deviation from quasi- 
neutrality can therefore be easily deduced. When the iterative process is convergent 
(it is in fact rapidly convergent for broad layers) the solution requires only solving 
a few non-linear algebraic equations at each value s. As a constant x-spacing is nor 
required in this process, the algebraic equation (29) for 4 can be added to a predic- 
tor-corrector scheme for solving the coupled differential equations (10) for the 
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magnetic vector a. This is particularly interesting when mixed boundary layers (i.e., 
boundary layers with both electron and ion-gyroradii as characteristic scale 
lengths) are involved. 

Although other methods for solving boundary value differential equations could 
in principle be applied to this problem, as for instance, the conjugate gradient algo- 
rithm [16] or the strongly implicit procedure of Stone [17], these methods usually 
boil down, at least conceptually, to the solution of large numbers of simultaneous 
non-linear equations solved by linearization and iteration. Another interesting 
approach could be the use of the simultaneous overrelaxation (SOR) method [1X] 
for which an initial distribution &t, x) relaxes to an equilibrium with time 
derivative vanishing as t + C;G. However, most of these alternative methods use a 
constant x-spacing. Therefore, for mixed transition layers, the simultaneous solu- 
tion of Eqs. (9) and (10) by these methods should imply a sufficiently small (and 
constant) x-spacing to be able to describe the very thin electron layers embedded 
in a broader ion layer. The number of algebraic equations to be solved 
simultaneously would increase accordingly and the computer storage available to 
implement these methods should be large enough. 

However, the method we have introduced in this paper provides an interesting 
and completely different numerical procedure which is conceptually simpler and is 
somewhat more physical. Furthermore, it does not require a large computer 
storage. 

4. SOLVING POISSON'S EQUATION IN AN ION-DOMINATED LAYER 

In this section, we consider a TD separating a hot hydrogen plasma from a 
cooler one. The velocity distribution function for the electrons as a whole is 
isotropic since an ion-dominated layer is assumed. This layer has plasma boundary 
conditions characterized by eight plasma parameters as listed in Table I. Across the 
transition region, the temperature and density of each plasma species are respec- 
tively (3(x) and n(x). Asymptotically, f?( + a) = T, IZ( - ‘CC ) = N, and n( + CYJ ) = N,. 
The magnetic field at x = -‘x is assumed to be 40 nT. 

TABLE I 

Plasma Boundary Conditions and Parameters of 
Velocity Distribution Functions for 

the Ion-Dominated Layer Illustrated in Fig. 1. 

v z Species T(eV) N,(cmm3) N,(cmm3) Cc. C, 

1 - 1 Electrons 2500 0.5 0 1 0 
2 - 1 Electrons 2500 0 0.15 0 1 
3 fl Protons 12.000 0.5 0 1 0 
4 +1 Protons 3000 0 0.15 0 1 



These plasma parameters correspond to two interpenetrated hydrogen plasmas 
with different characteristics. They correspond to typisa! magnetos~be~~ plasma 
populations. The values of the parameters C, and C, (see Eq. i3jj are also given 
in this table. From (3j, it can be seen that they are consistent with the fact hat the 
plasma from .Y = -CG (/from x = +#x j is absent at I = + ~8 [,!-Y = -‘x j. 

From Table 1 and from (5), the number densities 01) for each plasma species car. 
be written 

Let us now choose the electric potential at .Y = -3~ equal to zero, i.e... 

then, the parameters a in Eqs. (31 j-(34j can be seen to be related to the asymptorrc 
densities and to the value of 4 at s = + S. Taking the plasma neutrality at x = isx 
into account, i.e., 

one obtains (assuming that B(x) > 0, SO that Q( - 3cij= -XX and a( i ,X j = + x j 

~‘1)=y(3’=NI (=O.S cm-j) ix) 
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As the electron velocity distribution as a whole is isotropic, Eq. (3) implies that a(‘) 
must be identical to a”‘. Therefore, from (38) and (39) 

The electron density throughout the transition is then 

e&x)- n-(x)=n”‘+n”‘=N,exp - i 1 kT- (42) 

(40) 

(41) 

Of course, Eq. (42) represents a Maxwellian distribution of electrons in the field 
of a conservative force (the electric field) acting on them. Consequently, the elec- 
trons do not contribute to the current density. This can be seen directly from (6) 
since j(l) = -jc2) and j- = 0. Therefore, the current density inside the layer is only 
due to the protons and the characteristic thickness of this transition is the proton 
gyroradius CR:?’ = 280 km, R, IJ) = 86.5 km with B, = 64.70 nT]. 

Figure 1 illustrates the structure of the electric potential, electric field, and charge 
density for different orders of approximation in solving Poisson’s equation. The dis- 
tance across the transition is given in unit of the ion gyroradius at x= --cc (i.e., 
R: = Ry) = 280 km). The bottom panels demonstrate that, on and after the lirst- 
order approximation, the electric potential is determined with a relative accuracy 
/(d3 -dj)/d3) (i= 1, 2) much less than lo-‘. The quasi-neutrality approximation 
(&,) still remains a very good approximation, since ) (4, - &)/dr I is less than 
3 x 10m6. It can also be seen that. on and after the first-order approximation, the 
charge density (Q) does not exhibit significant differences between successive 
approximations. This means that the iterations are converging in cases of ion- 
dominated layers. Note also that the relative error on do considered as an 
approximate solution of Poisson’s equation (i.e., 3 x 10-6) is of the order of the 
relative charge density QJerz- (no- being the total electron density). 

5. SOLVING POISSON'S EQUATION IN AN ELECTRON-DOMINATED LAYER 

The plasma parameters in the case of an electron-dominated layer are given 
in Table II. The magnetic field at x = -m is 40 nT. In this example, 
T(l)= Tc2J = T- = 2500 eV and Tc3’ = Tt4’ = TC = 5000 ev. 

The expressions for the number densities (n) are similar to the ones given by 
Eqs. (31)-(34) with Ti3’= T(“= Tf and 
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ELECTRiC POTENTIAL IV! ELECTRIC FIELD fmV/ml ChARGE DENSITY !lC-" e x-3! 

FIG. 1. Electric structure of an ion-dominated layer. Plasma boundary conditions are giwn in 

Table I. Tte magnetic field at x = - ;5’ is 40 nT. The ion gyroradius (RF = ii>;’ = 280 km) is the charx- 

teristic scale length The left-hand side panels display the electre potential (4). w:hile the electric field i i:‘i 

and the charge density (Q) are represented in the middle and right-hand side panels. respcctixl:f 

Approximations of the solution of Poisson’s equation are disp!ayed up io the third order. 9be bot?oar 

panels are enlargements of a tiny small section of the layer. it can be seen tha: the successive app:oxirca- 

tions are ver? rapidly converging to a solution. This solution still remarii.. ‘1~ very close to the resuit 
obtamed from the quasi-neutrality approximation or zero-order approximaiion (within a precision of 

3 x 1W”). Tte relative error on do can be seen to be of the order of QU!eirm (K being the Iota: eiec::on 

density j. 

TABLE I! 

Plasma Boundary Conditions and Parameters of 
Velocity Distribution Functions for 

the Electron-Dominated Layer Illustrated in Fig. 2 and 3 

\' z Species T(eV) N,(zmm~‘i N,(cmm’l C, ir, 

1 - 1 Electrons 2500 0.5 0 1 0 
2 - 1 Electrons 2500 0 0.4 0 1 

3 +i Protons 5000 0.5 0 ;o 
4 + I Protons 5000 0 0.1 0 1 
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Assuming (35) to hold and B(X) > 0, the plasma neutrality at x’ = fa imposes 

cI(‘) = J3l= N, (=OS cm-‘) (43 1 

d2) exp [“Lcy)] = a’“‘exp [ - “ic:j] = N, (=0.4 cm-‘). (44) 

As the ion velocity distribution as a whole is isotropic, (3) and (43) imply that 

u(4) = ai3) = Jj,T/ (=OS cm-‘). W 

Therefore, from (44) and (45), 

(= 1115.718 V) 

T+;‘T- 

c((?) = N (=0.256 cm-‘). 

The proton density throughout the transition is then 

4(x) 
t?+(~)=n'~'+n'")=N, exp _ - 

L 1 kT+ . 

(46) 

(47) 

(48) 

As expected, (48) represents a Maxwellian distribution of protons in the field of 
a conservative force (the electric field) acting on them. Consequently, the protons 
do not contribute to the current density. 

Indeed, from (6), jc3’ = -j(‘) and j’- = 0. Therefore the current density inside the 
layer is only due to the electrons and the characteristic thickness is the electron 
gyroradius [R$” = 2.98 km, R, (2) = 2.73 km with B, = 43.61 nT]. 

Figure 2 illustrates the structure of the electric potential, electric field and charge 
density up to the fourth order in solving Poisson’s equation by the iteration method 
explained in Section 3. The distance across the transition is given in units of the 
electron gyroradius at x = --CG (i.e., RF = Rj”= 2.98 km). It can be seen that 
1(d4-&,)/d41 is of the order of 6 x 10p3, while 1(d4-d1)/d4) is of the order of 
5 x 10p4. It can also be seen that each successive approximation di (i= 0, . . . . 3) 
reduces the relative error on 4, 1(d4 - di)/dJ, by roughly a factor of 10. These suc- 
cessive approximations converge to an single solution, since the differences between 
them decrease as the order of approximation increases. This is illustrated in the 
lower panels: the successive charge densities Qi (i= 0, . . . . 4) converge to an 
asymptotic solution located between the Q3- and Q4-curves. As previously noted, 
the relative error on do. considered as an approximate solution of Poisson’s 
equation (i.e., 6 x 10p3j is again of the order of Q,,/en -. 

The maximum error in the electric field intensity using the quasi-neutrality 
approximation can be seen to be less than 3%. This maximum error occurs at the 
center of the transition region, where the gradient of the potential is maximum. 
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Frc;. 2. Electric structure of an electron-dominated layer. Plasma boundary conditions are given in 
Table II. The magnetic field at x = -X is 40 nT. The electron gyroradius (R7 = R\” == 2.98 km J is the 
characteristic scale length. The above panels display the electric potential (4) while the electric field !E[) 
and :hr charge density (Q) are represented in the middle and bottom panels. respective?y. Approdma- 
tions of the so!ution of Poisson’s equation are displayed up to the fourth order. Paneis in the second and 
third coittmns are enlargements of small or tmy sections of the layer. It can be seen that the successive 
approximations are converging to a solution. In this example, the characteristic thickness (1s) is of the 
order of five Debye lengths (A). Note that each successive approximation reduces the relative error cn 
# by roughly a factor of 10. The relative error on 9, is still of the order of &.;e~ (n- bemg the total 
electron density). In this example, the solution 4” obtained from the quasi-neutrality approximation 
holds within a precision of 6 x 10m3. 
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FIG. 3. An illustration showing that ~7, B, and J (the total current density. J=zj) are not very 
sensitive to the order of approximation in solving Poisson’s equation. For the electron-dominated layer 
considered in this example (same as Fig. 2) this result is more specifically true on and after the lirst- 
order approximation. Because a, B, and J do not change significantly when the order of approximation 
becomes larger than 2, (29) can be decoupled from Eqs. ( 10 J and ( 12) when considering approximations 
with order equal to (or larger than) 3. 
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Note also that the charge density in this electron-dominated layer is about lo3 
times larger than the corresponding charge density computed in the ion-dominated 
layer illustrated in Fig. 1. In Fig. 1 and 2, the Debye length (A,) at x = -m is 
526 IX In the electron-dominated layer shown in Fig. 2, the Debye length at 
x= +a, (A,) is 588 m while the characteristic thickness D lies between R; = 
2.98 km and R; = 2.73 km, i.e., D/A ,z 4.65 - 5.67. For such thicknesses (D 3 52), 
the method of successive approximations remains a convergent one and, further- 
more, the quasi-neutrality approximation is still a reasonable approximation which 
can be used for all practical purposes. 

In Fig. 1 and 2, E, and Q2 have been calculated numerically by a Lagrangian 
method of interpolating polynomial. Third-order (Fig. 1 and 2) and fourth-order 
(Fig. 2) approximations have been successively determined as solutions of (29) 
while keeping the second-order approximation (a,, BZ) for a and B. For the plasma 
boundary conditions given in Table II, Fig. 3 indicates that a and B are not very 
sensitive to the order of approximation in solving Poisson’s equation. Indeed, it can 
be seen that aI, BZ, and J, (the total current density) do not differ significantly 
from al, B,, and J, (the differences are even much less in ion-dominated layers 
such as the one illustrated in Fig. 1). Therefore, on and after the third order, it is 
quite justified to decouple (29) from Eqs. (10) and (12) as done in this paper. 

At this stage, it can be asked whether convergence is still achieved when the 
thickness D schrinks to a few Debye lengths A. The results presented in Fig. 4 
illustrate such a case of a sharper boundary layer. The plasma and magnetic field 
data are just the same as those presented in Table II, except that the number 
density at x= +CC, (N,) is now 0.15 cm-’ instead of 0.4cme3. We also assumed 
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FIG, 4. Electric structure of an electron-dominated layer. The plasma and magnetic freid bo~dar) 
condirions are identical to those pertaining to Fig. 2, except that, at x = fx, the zi;mber density of the 
particles of either sign has been lowered (:V, =0.!5 w-3) The electrorP gyroradius (tF; = K>” = 
2.98 km) is the characteristic scale length. In this example, the Debpe length OG the tight-iand side of 
[he transition is 960 m. i.e., a small fraction of the electron gyroradius ii?: = 2.31 km). It i-as be see3 
that, for positive values of ,v (.Y % 1.5 - 3R; ), the successive approximations Gr (3, do xot converge to 
a soluzion. since higher order approximations differ more arid more from !ower ones. Note that :he 
charge density is this example is 10 times larger than the ale iilustrared in Fig. 7. 

that the transition is an electron-dominated layer (#( + XI) zz 6020 V. ZX”’ = 
0.0135 cm-‘). 

Because the number density at s = +#x), (IV,) has been reduced, the 
at the right-hand side of this transition increases <A, = 960 m). In rhis example, the 
Debye length (AZ) is a small fraction (R; /A, = 2.41 j of the electron gyroradius at 
I = +8~8 (R; = 2.31 km) and it can be seen from Fig. 4. that for positive values of 
.yix - 1.5 - 3R; 1, the successive approximations do not converge to an asymptotic 
solution, since higher order approximations for Q; differ more and more from lower 
ones. It can therefore be concluded that when D is of the order of ? - 3A, the 
method of successive approximations for solving Poisson’s equation breaks down. 
Note also that the charge density in this example is 10 times larger than the one 
illustrated in Fig. 2. 

It can also be concluded that in the case where the plasma densit 
zero on one side (i.e., plasma-free magnetic field on one side of the T 
free plasma on the other) the iterative method proposed above will fail to converge, 

e when the plasma density approaches zero the Debye length grows indefim;ely 
the quasi-neutrality approximation always fails to be valid at the outer-most 

edge of the: plasma region. This is the case of the classical Ferraro [19] cold piasma 
sheath model: an early attempt to describe the solar wind-magnetosphere inte:ac 
tion region as a TD between a vacuum geomagnetic field on one side and a :olo 
streaming solar wind on the other. The basic feature of this model was that the 
random thermal speed of the solar wind was assumed to be small compared :c the 
organized streaming velocity. 
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An attempt to improve the quasi-neutrality approximation in the case of the cold 
plasma sheath model was made by Sestero [ZO]. For that model, which shows 
large charge separation effects, Sestero found that Poisson’s equation could be 
solved by a Runge-Kutta integration scheme. This result seems to indicate that 
Runge-Kutta or Hamin integration methods could be used when the thickness 
of the transition becomes smaller than a few Debye lengths, i.e., when charge 
separation effects cease to be negligible. It can therefore be expected that when the 
method of successive approximations fails to converge, i.e., when the electric charge 
density becomes large, usual integration methods such as Runge-Kutta or Hamin 
predictor-corrector scheme could successfully be used instead. 

6. CONCLUSIONS 

From this study of Poisson’s equation in collisionless TD, it can be concluded 
that the difficulty in solving this second-order differential equation by standard 
computational methods, such as Runge-Kutta or Hamin schemes, can be avoided 
in many practical problems by using the so-called quasi-neutrality approximation. 
For the broad ion-dominated layer illustrated in Fig. 1 (D y lo’- 103L), the 
relative error of the quasi-neutral solution is of the order of 10p5-10 -6 tbr the 
electric potential. 

For the thin electron-dominated layer illustrated in Fig. 2 (D z 51), the quasi- 
neutrality approximation holds to a relative precision of the order of 1O-‘-1O-3. In 
this electron-dominated layer, the error on 4 can be reduced by considering higher 
order approximations. Each successive approximation reduces the relative error on 
4 roughly by a factor of 10. However, as illustrated in Fig. 4, when the charac- 
teristic thickness of an electron-dominated layer shrinks to a value less than 31, the 
method of successive approximations for solving Poisson’s equation fails. In these 
sharp transition layers, the relative charge density is generally larger than lo--‘. In 
that case, it is expected that Runge-Kutta or Hamin schemes could be stable 
integration methods. 

In all cases illustrated in this paper, the relative error on & is of the order of 
Q,,/en - (the relative charge density). This means that, even in very sharp trans- 
itions with Da 3L, the potential obtained by solving the quasi-neutrality 
approximation does not differ from the true solution by more than a few percent. 

Since, in space plasmas, the Debye length is generally much smaller than the 
characteristic scale lengths of density and field variations, the quasi-neutrality 
approximation can be used with much confidence in all cases, even in sharp trans- 
itions like those involved in the mechanism of generation of discrete aurora1 arcs as 
proposed by Evans ef al. [21] and Roth et al. [22]. Although the charge-neutrality 
approximations were used in these studies, the conclusions that were deduced 
therein remain unaltered, in light of the present study. 

The iterative method of successive approximations, that has been developed in 
this paper to solve Poisson’s equation in the case of TDs, is suitable when an 
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improvement in the electric potential accuracy is desirable. particularly when the 
thickness of the transition region shrinks to D -- 51. But, even in this case. the 
correction on the quasi-neutral solution does not exceed 1%. 

It has also been shown that the modifications of the electrostatics resulting from the 
consideration of higher order approximations leave the magnetic field distribution 
virtually unchanged (see Fig. 31. Therefore, early in the process of iteration, 
Poisson’s equation can be decoupled from the equation governing the magnetic 
field. In particular, when the magnetic field coupling is weak, manipulation of the 
turgid 4;’ function in the Appendix can probably be avoided by already ignoring the 
magnetic field coupling from the second order approximation. In that case. 
computation of (6; can be made directly by a Lagrangian method cf interpolating 
polynomial. 

When applied to purely electrostatic problems involving solely a non-linear 
Poisson’s equation with source of charge depending on the electrostatic potential 
the application of the iteration process is then straightforward. Indeed, as a conse- 
quence of the absence of magnetic field coupling, the Laplacian of each 4n can then 
be computed directly by the usual Lagrangian method without resorting to exlslicit 
expressions for the second derivatives of lower order solutions. 

Generally speaking, the iterative method of successive approximations developed 
in this paper can be easily extended to any problems involving a non-linear 
Poisson’s equation with a right-hand side member depending on the actual 
potential solution. Compared to other numerical methods, this one is conceptually 
simpler, has a more physical ground, does not require a constant ~-spacing &ml 
need no large computer storage. 

APPENDIX 

The first-order approximation d, is solution of (281, i.e.. 

where 4: is given by (22). 
By deriving (28) once and twice with respect to X, one obtains expressions for 

~;CU,~ 4,. Bi) and GJ~‘(~~~ 41, B,), respectively (note that the derivative rules forjY7, 
are similar :o those given for Jrsr: use j instead of J in (251 and (2.61). It is found 
that 
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with 

and 

(A.51 

with 

where 

(A.7) 
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